
Master’s Thesis
Linear combinations of ZX-diagrams for parameterized

quantum circuits

Gina Muuss

November 21, 2023
Semester WS22/23

Advisor:
Dr. Tobias Stollenwerk
Second Advisor:
Prof. Dr. Petra Mutzel

Institute for Computer Science
University of Bonn

Abstract
We formally define linear combinations of ZX-diagrams and show the
practical impact of this definition by proposing an prototypical algo-
rithm for calculating expectation values of parameterized quantum cir-
cuits. ZX-calculus is a modern approach to quantum computing circuits,
that has also been applied to reasoning about solutions of combinato-
rial optimization problems on noisy intermediate-scale quantum (NISQ)
devices. Arising in the analysis of the QAOA is the problem of simpli-
fying symbolic ZX-diagrams to analytical expressions. We formalize the
notion of previously proposed linear combinations of ZX-diagrams and
harness their power towards a simplification algorithm. Prior research
does not formally define sums of arbitrary ZX-diagrams. Further no
simplification algorithm known to us is capable of simplifying symbolic
ZX-diagrams to an analytical expression. This twofold gap is tackled
first by means of assessing category theoretic properties of the cate-
gory ZX and then by developing a simplification algorithm using these
properties. We formalize the notion of linear combinations using the
structure of a category enriched over commutative monoids. As a proto-
type for analysing arbitrary QAOA circuits, we present an algorithm for
simplifying symbolic ZX-diagrams that come up when applying QAOA
to the Maximum Cut Problem. This lays the foundation for fully auto-
mated tools to analyse parameterized quantum circuits (PQC).

Contents

1. Introduction 5

2. Basics 7
2.1. Quantum Computing . 7

2.1.1. Mathematical prerequisites . 7
2.1.2. A very short tour of why quantum mechanics is surprising 8
2.1.3. Mathematical description of quantum mechanics 9

2.2. Quantum circuits . 10
2.2.1. Parameterized quantum circuits . 13
2.2.2. Variational Quantum Algorithms . 13

2.3. Category Theory . 14
2.4. ZX-calculus . 21

2.4.1. How to build diagrams . 21
2.4.2. ZX-diagram as quantum operators 22
2.4.3. How to modify diagrams . 24
2.4.4. Soundness, universality and completeness 25
2.4.5. Linear combinations in ZX-calculus 26
2.4.6. Category theoretic view . 28

2.5. Quantum Approximate Optimization Algorithm (QAOA) 31

3. Related Work 33

4. Linear Combinations of ZX-diagrams 36
4.1. Motivation . 36
4.2. Formal Construction . 37

4.2.1. Scalar multiplication . 37
4.2.2. Sums of diagrams . 37

4.3. Proofs of equivalence . 41
4.3.1. Rules from Stollenwerk et al. 41
4.3.2. Further useful rules . 43
4.3.3. Properties of the extended calculus 44

5. Implementation 45
5.1. Framework selection . 45
5.2. Implementation details . 46
5.3. Simplification Algorithm . 47

5.3.1. Main Idea . 47
5.3.2. Analysis . 51
5.3.3. Limitations . 52

3

Contents

6. Conclusion 53

A. Appendix 58
A.1. Pseudo-code simplification algorithm . 58
A.2. Open source contributions . 59

4

1. Introduction

Quantum computing promises exponential speed-up over classical computers for certain
applications [Sho94]. However, scientific consensus has not yet been formed on the question
whether quantum computing with noise actually grants a speed-up [Bha+22].

Recently several Noisy intermediate-scale quantum (NISQ) algorithms have been proposed
[Bha+22]. These algorithms can run on quantum devices that already exist but the devices
are currently to small for to also run quantum error correction [Bha+22]. An example are
variational quantum algorithms which use a classical optimizer and a quantum computer as
an oracle for solving the original problem [Cer+21]. To this end, parameterized quantum
algorithms are used and the parameters are trained with the classical optimizer [Cer+21].
A prominent example of variational quantum algorithms is the Quantum Approximate
Optimization Algorithm (QAOA) [FGG14]. QAOA can be used to approximately solve
a plethora of combinatorial optimization problems, such as MaxCut [SH22; Cer+21]. It
is an open question which performance we can expect from QAOA in these scenarios
[SH22]. Answering this question is a topic of active research [SH22; Bha+22; Cer+21]. In
answering this question, it is often valuable to be able to convert a parameterized circuit
to a simplified analytical expression [BK21].

Recent years have also given rise to a diagrammatic language for reasoning about quantum
circuits [CK17; Wet20]. This language called ZX-calculus naturally expresses composition
and parallel execution of processes [CK17].

In [SH22], Stollenwerk et al. tackle the problem of extracting simplified analytical expres-
sions from parameterized quantum circuits using ZX-calculus. To do so they introduced
linear combinations of ZX-diagrams. Omitting formal category theoretic considerations
in an application driven approach [SH22]. The first goal of this thesis is to close this
gap. Stollenwerk et al. used their linear combinations to simplify some parameterized
quantum circuits by hand to reproduce results from literature as a demonstration of their
method [SH22]. However, an extension towards automatic calculation would facilitate
new insights into the performance of variational quantum algorithms [SH22]. Here we
focus on automating simplification of diagrams used in QAOA for solving MaxCut in-
stances. First, we implement linear combinations, including rewrite rules in a library for
manipulating ZX-diagrams. Candidates include: PyZX [KW20], DisCoPy [FTC20] and
Quantomatic [pro18]. Second we develop an algorithm which uses linear combinations to
simplify symbolic ZX-diagrams stemming from QAOA.

5

1. Introduction

In summary, the main contributions of this thesis are:

• Formal definition of linear combinations of ZX-diagrams in category theoretic terms

• An implementation of new definitions and rewrite-rules in a combination of DisCoPy
[FTC20] and PyZX [KW20].

• An algorithm which uses linear combinations to simplify symbolic ZX-diagrams of
parameterized quantum circuits expectation value to analytical expressions stem-
ming from QAOA for MaxCut.

The remainder of this thesis is structured as follows: In Chapter 2 we lay necessary
foundations from the areas of Quantum Mechanics, Category Theory and Combinatorial
Optimization. We establish the scientific context of our work in Chapter 3. Building on
these foundations we formally introduce linear combinations of ZX-diagrams in Chapter 4.
Furthermore in Chapter 5 we give a prototypical algorithm for simplifying symbolic ZX-
diagrams of a certain shape. In Chapter 6 we summarize, discuss our results and give an
outlook for future work.

6

2. Basics

2.1. Quantum Computing
Analogously to a basic understanding of electronics being required to reason about clas-
sical computers, a basic understanding of quantum mechanics is required to reason about
quantum computers. Therefore we will state the basics of how we describe closed quantum
mechanical systems. In the future it may turn out that the universe does not actually
work as currently described. For now, we will assume it does as we define below to ease
considerations. We will omit any derivations and refer the reader to [NC02] for a more
complete introduction suitable for computer scientists.

2.1.1. Mathematical prerequisites
In this section, we introduce some mathematical prerequisites. Since we only concern
ourself with finite dimensional systems we exclude infinite dimensional cases.

Definition 2.1: Hilbert space

A Hilbert Space is a vector space V over a field with an inner product. Note: Such
an inner product is a map (·, ·) : V × V → C, such that for v, w ∈ V :

1. (·, ·) is linear in its second argument
2. (v, w) = (w, v)∗ (where * denotes the complex conjugation)
3. (v, w) ≥ 0, with equality iff v = 0

[NC02]

Furthermore we introduce what is known as Dirac notation [NC02]. Given some Hilbert
space V over a field K, we have the following conventions:

Definition 2.2: Dirac notation

Given a matrix A over K
• |v〉 represents a vector in V , called ket, with label v
• 〈v| dual to |v〉, called bra
• 〈v|w〉 inner product of (v, w)
• A∗ complex conjugate of A
• AT transpose of A
• A† := (AT)∗ adjoint of A
• I identity matrix

[NC02]

7

2. Basics

We make note of some further conventions. In this entire thesis we always choose the
canonical basis for any Hilbert Space we encounter. Given some basis we number the
basis vectors and label kets representing the basis vectors with the binary representation
of the number. For example in C4 the canonical basis is given as {|00〉 , |01〉 , |10〉 , |11〉}
and in C2 as {|0〉 , |1〉}. This convention is extended further :

|+〉 := |0〉 + |1〉√
2

and |−〉 := |0〉 − |1〉√
2

[HV19]

Additionally we define a very prominent subset of matrices in a Hilbert space.

Definition 2.3: Unitary matrix

Given a matrix A over K it is called unitary if and only if its adjoint is its inverse.
So in Dirac notation A† = A−1. Linear transformations given by unitary matrices
preserve inner products.
Note: We sometimes use the word unitary as a noun and take it to mean unitary
matrix. [GS18]

2.1.2. A very short tour of why quantum mechanics is surprising
Several experiments [Dem16] have shown that the physical universe on a quantum scale
does not behave as we would expect from studying behaviours on a larger scale. This has
lead to large disturbance in the world of physics [GS18].

There are several philosophical interpretations of quantum mechanics [GS18]. For this
work the philosophical point is rather irrelevant, since we only exploit the way the universe
works to our advantage. Here we do not need the reasons why the universe works in this
way, we are only interested in a practical description of how, in order to use it. In fact,
we are in good company doing so, since Richard Feynman remarked I think I can safely
say that nobody understands quantum mechanics. [GS18].

One experiment demonstrating weirdness of quantum mechanics is the double-slit ex-
periment [FLS15]. In this experiment we shot electrons at a wall with two slits and
detect where on a second wall behind the electrons land [FLS15]. See Figure 2.1 for a
schematic view of the experimental setup and two theoretical possible measurement out-
comes [FLS15]. On the left we see the distribution we expect, if we regard electrons as
particles [FLS15]. If instead we view electrons as wave we expect the right pattern [FLS15].
Running the experiment as described will yield the right pattern, seemingly confirming
that electrons behave like waves [FLS15]. Interestingly if we now slightly modify the ex-
periment by measuring at one of the slits whether an electron has passed it, we get the
left pattern [FLS15]. This rather surprising result leads to several important implications
[FLS15]. Explaining them in detail is well beyond the scope of this work. Therefore,
we focus on the following two facts we notice: First, that measurements can change the
outcome of an experiment [FLS15]. Second, that if not observed the electron travels like
a wave, seemingly through both slits at the same time [FLS15].

8

2. Basics

Figure 2.1.: Schematic setup of double slit experiment, with two theoretical possible out-
comes

The second is akin to our central idea, that the state of a system does not have to be fully
determined if it is not observed [GS18]. This is often described as systems being in several
states at once [GS18].

2.1.3. Mathematical description of quantum mechanics
In order to formalize the outlined weirdness of quantum mechanics, a mathematical for-
mulation has been chosen. It can be summarised in five postulates which we will state
without a formal justification. We utilize this as layer of abstraction above the physical
implementation of such experiments.

Definition 2.4: Postulate 1: Closed quantum mechanical system

A closed quantum mechanical system can be described by a Hilbert space. This is
called state space.
Each state of the system is completely described as a vector in this space. This is
called state vector. [NC02]

For a full description we also need to describe how time evolution works in these systems:

Definition 2.5: Postulate 2: Time evolution

Time evolution of a closed quantum system is always a unitary transformation of
the state space. [NC02]

Gaining information about the state of a system from outside the system is typically done
via measurements. The third postulate explains how and what we may measure:

9

2. Basics

Definition 2.6: Postulate 3: Measurements

Measurements of a quantum mechanical system are described by a set of measure-
ment operators.
These operators Mi act on the state space and each corresponds to one possible
measurement output.
The probability of a system in state |ϕ〉 yielding result i is given by 〈ϕ| M †

i Mi |ϕ〉.
After measuring result i the system is in state

Mi |ϕ〉√
〈ϕ| M †

i Mi |ϕ〉

The measurements operators have to satisfy the completeness equation which en-
sures that the probability for the different results is normalized.∑

i

M †
i Mi = I

[NC02]

Observables Observables are hermitian operators on the state space of a system [NC02].
These may be regarded a special case of Postulate 3 [NC02]. They will project the state
to one of the eigenvectors of the operator [NC02]. These hermitian operators allow for a
measurement to be defined in one matrix and not via a set of operators.

The final postulate allows us to combine systems and describes how they behave then.

Definition 2.7: Postulate 4: Composite systems

Physical systems can be composed using the tensor product of the state spaces.
The resulting space is the state space of the composed system. [NC02]

Using these postulates we can describe quantum mechanical processes mathematically and
predict their outcomes.

Expectation values One example of predicting the outcome of experiments is calculating
the expectation value of an operator. Consider an observable U for a state space Cd with a
matrix representation U ∈ MatC. Given a state |ϕ〉 ∈ Cd we can calculate the expectation
value of the operator with respect to the state as: 〈ϕ| U |ϕ〉. This is the value we expect
to measure if we observe U in a system in state |ϕ〉.

2.2. Quantum circuits
When working with a gate based quantum computer programs can be expressed as cir-
cuits [NC02]. In order to understand quantum circuits we first have to understand how
information is stored in a quantum computer. To this end, we introduce the concept of
qubits:

10

2. Basics

Definition 2.8: Qubit

A qubit is an abstract representation of a single bit of information.
The state space of a single qubit is C2. Two linear independent vectors, commonly
|0〉 and |1〉, are interpreted as zero and one respectively.

Qubits are analogous to classical bits in classical computers as they can store a value 0 or
1. They differ since a qubit can also store, in some sense, values in between the two.

Qubits can have different physical representations [NC02]. We will not concern ourself
with how qubits are represented in our applications but will just assume there to be some
sensible representation.

Qubits can be combined as defined in Postulate 4, in order to represent larger chunks of
information. This combination is called qubit register.

Definition 2.9: Qubit register

A qubit register of size n stores the composite state of n qubits.
Given n qubits each with state |φi〉 ∈ C2 the composite state is given by

|φ〉 = |φ1〉 ⊗ · · · ⊗ |φn〉 ∈ C2n

Further if we have two qubits in a a computational basis state, for example |0〉 and
|1〉, we write the state of the register, consisting of both qubits, as |01〉. [NC02]

0
&

0
≥1

&

1

Figure 2.2.: Example for a classical circuit, with inputs 0, 0, 1 [Tan21]

Rather informally a classical computer can be described as an experiment involving lots of
complex electronics. These electronics receive inputs and the system reacts to these inputs
in ways predefined by whoever built the computer. We could just always plug different
electronic components into each other and perform computations this way. These systems
get complex rather fast and a consistent description of the circuits has been developed.
Typically classical computers are described by combinations of gates from a specific set
[Hof20]. This allows for easier reasoning by abstracting away the actual implementation
in hardware [Hof20]. These gates can be described by their logic tables; examples can
be found in Table 2.1. They may be combined to form a circuit (for an example see
Figure 2.2).

11

2. Basics

Logic operation Notation according to DIN 40900

AND
&

OR
≥1

NOT
1

Table 2.1.: Overview of classical circuit symbols [Hof20]

Matrix representation,
Canonical name Symbol in circuit in the canonical basis

Pauli-X X

[
0 1
1 0

]

Pauli-Y Y

[
0 −i
i 0

]

Pauli-Z Z

[
1 0
0 −1

]

Hadamard H 1√
2

[
1 1
1 −1

]

Phase S

[
1 0
0 i

]

π/8 T

[
1 0
0 eiπ/4

]

SWAP


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



C-NOT


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Table 2.2.: Overview of typical quantum logic gates, definitions from [NC02]

12

2. Basics

For quantum computing, a similar step has been taken in recent years [NC02]. These gates
typically have a small number of qubits as its input and output. They are all valid time
operators and can therefore be represented by unitary matrices [NC02]. See Table 2.2 for
an overview of gates typically used, although we may use arbitrary unitary matrices as
gates. As in classical computing these gates may be combined in any sensible way to form
what we call a circuit. For an example circuit see Figure 2.3.

|0〉 H

|0〉 X

|1〉 Y

Figure 2.3.: Example for a quantum circuit, with inputs |0〉 , |0〉 , |1〉

In classical computing, the concept of universal operator sets has been convenient in as-
serting the usefulness of physical implementations [Hof20]. Once a computer can represent
all gates in a universal operator set, it can represent any circuit [Hof20].

In order to reason about quantum computing, several sets of universal operator sets have
been defined [NC02]. These consist of several one or two qubit gates which can (up to
arbitrary precision) represent any possible operator for any system [NC02]. A typical
universal operator set is given in [NC02] containing the Hadamard, Phase, C-NOT and
π/8 gates.

2.2.1. Parameterized quantum circuits
A parameterized quantum circuit is a family of quantum circuits depending on a set of
parameters [Cer+21]. Each assignment of values to the parameters gives a quantum circuit
[Cer+21]. One can only evaluate the quantum circuit with all parameters set to some
value. Informally, from a computer scientists view, this is akin to template programming
in C++; before running the program, values for all template parameters need to be defined.
Consider the following matrix:

U(x) =
[
1 0
0 eiπ/x

]
It is unitary and can therefore be used as a gate in a quantum circuit. That circuit then
depends on the parameter which is given to U . An example depending on {ϕ, β} can be
seen in Figure 2.4.

2.2.2. Variational Quantum Algorithms
Variational Quantum Algorithms (VQAs) leverage the power of classical as well as quan-
tum computers [Cer+21]. Mostly they are used for solving combinatorial optimization
problems [Cer+21]. Using a classical optimizer, they train parameters of a parameterized
quantum circuit [Cer+21]. The quantum circuit is used as an oracle for cost function (or
its gradient), which is classically hard to compute [Cer+21].

13

2. Basics

2.3. Category Theory
In the following we will review some basics of category theory which are needed to under-
stand the construction of linear combinations in ZX-calculus. Only the concepts required
for the construction will be presented. It is not intended as an introduction to category
theory for a new reader, but only serves to avoid ambiguity later on. This is therefore an
incomplete view of the basics of category theory and the interested reader should consider
reading an introductory book like [Mac13].

|0〉 H

|0〉 U(ϕ)

|1〉 U(β)

=

|0〉 H

|0〉
[
1 0
0 eiπ/ϕ

]

|1〉
[
1 0
0 eiπ/β

]

Figure 2.4.: A quantum circuit, with inputs |0〉 , |0〉 , |1〉, and parameters ϕ and β

14

2. Basics

The first definition we will concern ourself with is the one of a basic category:

Definition 2.10: Category

A category C consists of a collection of objects Ob(C) and a collection of arrows
(sometimes called morphisms), fulfilling these axioms:

1. For each arrow f there are objects domain dom(f) and codomain cod(f). We
write f : dom(f) → cod(f).

2. Given f : A → B and g : B → C there is an arrow g ◦ f : A → C called the
composite of f and g.

3. For each object A there is an arrow 1A : A → A called the identity arrow of
A.

4. Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f : A → B, g : B → C and
h : C → D

5. Unit: f ◦ 1A = f = 1B ◦ f for all f : A → B
[Awo06]

One example of a category that is interesting in the case considered here is the category
MatC.

Example 2.11: MatC is a category

We define a category MatC with the following data:
• the class of objects as the natural numbers N representing the complex vector

spaces Cn

• the class of morphisms as the linear maps between two vector spaces.
Note: The name MatC makes sense here, since linear maps between complex vector
spaces are exactly the matrices over C [HV19]. Composition is defined as matrix
multiplication.

Proof We check the axioms one by one, let A, B, C, D ∈ Ob(MatC) and f : A → B
and g : B → C.

1. f has domain dom(f) the number of columns of the matrix and co-domain
codom(f) the number of rows of the matrix

2. the composite of f and g is given by their matrix product, which fulfils the
g ◦ f : A → C property

3. the identity arrow on A is given by the identity matrix of size A
4. since matrix multiplication is associative, the morphisms are too
5. by definition the identity matrix is the neutral element of matrix multiplica-

tion, so the unit property is also fulfilled

We notice that a category alone does not have much structure. In order to describe quan-
tum processes a specific type of category called monoidal category has prevailed [HV19].
Our scenarios are in fact nicely described using strict monoidal categories. Also each
monoidal category is monoidally equivalent to a strict monoidal category so for reasons of
conciseness we restrict our presentation to strict monoidal categories [HV19]. So we define
the latter and refer the reader to [Bor94] for a definition of general monoidal categories.

15

2. Basics

Definition 2.12: Strict Monoidal Category

A strict monoidal category C is given by the following:
1. a category C
2. a bifunctor � : C × C → C
3. an object I ∈ C, called the unit
4. for every triple A, B, C of objects, an associativity isomorphism aABC : (A �

B) � C → A � (B � C) is the identity, so (A � B) � C = A � (B � C)
5. for every object A, a left unit isomorphism lA : I � A → A is the identity, so

I � A = A
6. for every object A, a right unit isomorphism lA : A � I → A is the identity,

so A � I = A
[HV19]

Intuition for this structure can be gained by considering an example.

Example 2.13: MatC as a strict monoidal category

The category MatC is a strict monoidal category with the monoidal product on
objects as the canonical sum on N and on morphisms as the tensor product over
spaces. The unit is then 1 ∈ Ob(C) and the left and right unit morphisms are given
by the identity matrix.

Proof : The tensor product of complex vector spaces is of the form Cn ⊗ Cm =
Cm·n. So in our category we define n ⊗ m = n · m.
Now we check the properties:

1. MatC is a category
2. ⊗ is our bifunctor
3. 1 is our unit
4. for A, B, C ∈ Ob(MatC) we have (A ⊗ B) ⊗ C = (A · B) · C = A · (B · C) =

A ⊗ (B ⊗ C)
5. A ⊗ I = A · I = A · 1 = A
6. I ⊗ A = I · A = 1 · A = A

So this is a monoidal category.

Note: One can proof that the tensor product for matrices is exactly what is called kronecker
product [Mer92]. We define the kronecker product of the morphisms as in [Mer92]: Let
f = (aij)i<m,j<n, g = (bij)i<l,j<k be arbitrary matrices over C. Then

f ⊗ g :=

 a11g . . . a1ng
...

am1g . . . amng

 =


a11b11 a11b12 . . . a1nb1k

a11b21 a11b22 . . . a1nb2k
...

... . . .
am1bl1 am1bl2 . . . amnblk


This is how the functor from our example acts on the morphims.

16

2. Basics

One can understand a monoidal category as a generalisation of a tensor product. There
can be multiple different products to make a category into a (strict) monoidal category.
It has been proven, that every monoidal category is equivalent to a strict one [HV19].
Therefore, without loss of generality we only consider strict monoidal categories here.

Another extension of a general category is a superposition rule. Literature sometimes also
calls this enrichment in commutative monoids [HV19].

Definition 2.14: Superposition rule

Given a category C, a superposition rule is an operation (f, g) 7→ f + g for all
morphisms A

f,g−−→ B such that:
• f + g = g + f
• (f + g) + h = f + (g + h)
• for all A, B ∈ Ob(C) there is a A

uA,B−−−→ B, such that for all A
f−→ B: f +uA,B =

f
• (g + h) ◦ f = (g ◦ f) + (h ◦ f)
• f ◦ (g + h) = (f ◦ g) + (f ◦ h)
• for all f : A → B and C, D ∈ Ob(C): uC,B = f ◦ uC,A and uA,D = uB,D ◦ f

[HV19]

Intuition for this structure can be gained by considering an example.

Example 2.15: MatC has a superposition rule

The category MatC has a superposition rule defined as canonical matrix addition:
For morphisms f = (aij)i<m,j<n, g = (bij)i<l,j<k we define their sum as:

f + g = (aij + bij)i<m,j<n

With uA,B the zero map it is fairly obvious that the axioms are fulfilled. Hence,
addition is a superposition rule in MatC

One may define a superposition rule for any category, so in particular also for (strict)
monoidal ones. As we in fact have done in the example above. One question that arises is
whether the monoidal structure and the superposition rule behave nicely with one another.
It is not clear that any sort of interaction between the two is guaranteed. In a special case
we can give some statements about their relationship, but in order to describe this case
we need two more preliminary definitions.

17

2. Basics

Definition 2.16: Biproduct

Let C be a category with a zero object and a superposition rule. The biproduct
of A1, A2 ∈ Ob(C) is an object A1

⊕
A2 with injection morphisms An

in−→ A1
⊕

A2
and projection morphisms A1

⊕
A2

pn−→ An for n ∈ {1, 2}, such that:
• idAn = pn ◦ in

• 0An,Am = pm ◦ in

• idA1⊕A2 = i1 ◦ p1 + i2 ◦ p2
[HV19]

Example 2.17: MatC admits arbitrary biproducts

For our category MatC the biproduct of two objects given by the direct sum of
vector spaces Cn1 ⊕Cn2 ∼= Cn1+n2 [HV19]. The injection and projection morphisms
are the canonical ones.

Proof Without loss of generality we assume the vector space to be equipped with the
standard basis. The zero object is given by the empty vector space C0, with the zero maps.
Then the injection morphism i1 : Cn1 → Cn1+n2 maps a 7→ (a, 0) and i2 : Cn2 → Cn1+n2

maps a 7→ (0, a). The projection morphisms map:

p1 :Cn1+n2 → Cn1 p2 :Cn1+n2 → Cn2

(a, b) 7→ a (a, b) 7→ b

As these are linear maps they can be expressed as matrices, so they are morphisms in
MatC.

Now we check the desired properties: Let a ∈ A1, b ∈ A2 be arbitrary but fixed.

p1 ◦ i1(a) = p1((a, 0)) = a ⇒ idA1 = p1 ◦ i1

since a is arbitrary.

p2 ◦ i2(b) = p2((0, b)) = b ⇒ idA2 = p2 ◦ i2

since b is arbitrary.

p1 ◦ i2(b) = p1((0, b)) = 0 ⇒ 0A1,A2 = p1 ◦ i2

since b is arbitrary.

p2 ◦ i1(a) = p2((a, 0)) = 0 ⇒ 0A2,A1 = p2 ◦ i1

since a is arbitrary.

Note that matrix multiplication and addition have a distribution law, so this law also
holds for our morphisms, when expressed as matrices.

18

2. Basics

(i1 ◦ p1 + i2 ◦ p2)(a, b) = (i1 ◦ p1)(a, b) + (i2 ◦ p2)(a, b)
= (i1)(a) + (i2)(b)
= (a, 0) + (0, b)
= (a, b)

⇒ (i1 ◦ p1 + i2 ◦ p2) = idA1⊕A2

Definition 2.18: Dual

Let C be a monoidal category with operation � and unit objects I, with objects L
and R. L is the left-dual to R and R is the right-dual to L, if there exists a unit
morphism I

η−→ (R � L) and a counit morphism L � R
ε−→ I making the following

diagrams commute:

L L � I L � (R � L)

L I � L (L � R) � L

idL

ρ−1
L idL�η

α−1
L,R,L

λL ε�idL

R I � R R � (L � R)

R R � I (R � L) � R

idR

λ−1
R η�idR

αR,L,R

ρR�idL idR�ε

[HV19]

Example 2.19: MatC admits arbitrary duals

Each A ∈ Ob(MatC) is its own left and right dual. In particular MatC admits
arbitrary duals.

Proof Consider the maps

ρ : 1 7→
∑

i

|i〉 ⊗ |i〉 ε : |i〉 ⊗ |j〉 7→
{

1 i = j

0 i 6= j

These clearly make the diagrams in Definition 2.18 commute.
[HV19]

19

2. Basics

With these definitions we get the following nice lemma:

Lemma 2.20: Tensors distribute over superposition

Let (C, �) be a monoidal category with biproducts and objects A, B, C, D with
morphisms A

f−→ B and C
g,h−−→ D. If A has either a left or a right dual, we have:

(f � g) + (f � h) = f � (g + h)

(g � f) + (h � f) = (g + h) � f

[HV19]

The proof can be found in [HV19] as Lemma 3.22. Moreover, we are not only interested
how categories behave but also how they interact with one another. For this purpose we
introduce the concept of a functor, which describes how one can change from category to
category.

Definition 2.21: Functor

Given two categories C and C̃, a functor F : C → C̃ is given by
• ∀A ∈ Ob(C) : F (A) ∈ Ob(C̃)
• ∀ morphisms A

f−→ B in C: F (A) F (f)−−−→ F (B) is a morphism in C̃
These maps satisfy:

• ∀ morphisms A
f−→ B, B

g−→ C in C : F (g ◦ f) = F (g) ◦ F (f)
• ∀A ∈ Ob(C) : F (idA) = idF (a)

[HV19]

We will need some additional properties functors may have, which are defined as follows:

Definition 2.22: Properties of functors

• A functor F is called full iff all functions C(A, B) → C̃(F (A), F (B)) given by
f 7→ F (f) are surjective for all A, B ∈ Ob(C).

• A functor F is called faithful iff all functions C(A, B) → C̃(F (A), F (B)) given
by f 7→ F (f) are injective for all A, B ∈ Ob(C).

• A functor is essentially surjective on objects iff for all B ∈ Ob(C̃) there is an
object A ∈ Ob(C) such that B ≡ F (A).

• A functor is an equivalence iff it is full, faithful and essentially surjective on
objects.

[HV19]

Definition 2.23: Equivalence of categories

Two categories C, C̃ are called equivalent if there exists a functor between the two
which is an equivalence.
Note: If two categories are equivalent then from a category theoretic point it does
not matter with which one we work with. [HV19]

20

2. Basics

2.4. ZX-calculus
ZX-calculus is a graphical language for reasoning about quantum processes. It can rep-
resent arbitrary quantum operators and systems. The basic idea is represent quantum
operators by composition and tensor product of certain linear operations. This repre-
sentation in form of diagrams can be transformed to diagrams representing equivalent
operators via rewrite rules which only make local changes.

In the next section we will first explore how ZX-diagrams are built, which rewrite rules
exist and how they can be interpreted as quantum systems and operators. Afterwards
we will see that the interpretation for quantum systems is sound, universal and complete.
Then a category theoretic view will be presented which will aid us in reaching the goal of
this thesis, to formally define linear combinations of ZX-diagrams.

2.4.1. How to build diagrams
ZX-diagrams only have a very limited number of building blocks, called generators, and
these may be combined arbitrarily. The building blocks we have are:

Definition 2.24: ZX-Generators

Z-spiders: α..
.

..
. nm X-spiders: α..
.

..
.m n Cup:

Hadamard: Swap: Cap:

[Wet20]

The spiders may contain a phase, if none is given we default to 0 [Wet20]. All diagrams
in this thesis are to be read from left to right. Bare wires pointing to the left are regarded
as inputs and bare wires pointing the the right are regarded as outputs. Bare wires not
pointing in one of these directions constitute undefined behaviour.

Example 2.25: An arbitrary ZX-diagram

This is an arbitrary ZX-diagram which has two inputs and two outputs.

21

2. Basics

2.4.2. ZX-diagram as quantum operators
ZX-diagrams may be interpreted as a quantum operator, effect or state depending on the
number of inputs and outputs. Operators without inputs are called state and operators
without outputs are called effects. So for each ZX-diagram and a given basis, we can assign
a matrix to it called its interpretation. This interpretation is how the diagram evolves an
element of the state space. [Wet20]

To obtain an interpretation for any ZX-diagram, we start by defining the interpretation
for the generators and then defining the interpretation for their interaction. So if we had
a diagram that just consisted of a single generator it would have the interpretation stated
below.

Definition 2.26: Generator Interpretations Overview

Z-spiders: α..
.

..
. nm =̂ |0 . . . 0〉︸ ︷︷ ︸

n times

〈0 . . . 0|︸ ︷︷ ︸
m times

+eiα |1 . . . 1〉︸ ︷︷ ︸
n times

〈1 . . . 1|︸ ︷︷ ︸
m times

X-spiders: α..
.

..
.m n =̂ |+ · · · +〉︸ ︷︷ ︸

n times

〈+ · · · +|︸ ︷︷ ︸
m times

+eiα |− · · · −〉︸ ︷︷ ︸
n times

〈− · · · −|︸ ︷︷ ︸
m times

Swap: =̂


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Cup: =̂
(
1 0 0 1

)
Cap: =̂


1
0
0
1


[Wet20]

The hadamard generator can be decomposed into Z and X spiders in several different ways

[Wet20]. As an example we give =̂ π
2

π
2

-π
2

[Wet20].

Interpretation of composition of these generators is represented by normal matrix multi-
plication [Wet20].

22

2. Basics

Example 2.27: Composition Interpretation

Consider these two simple diagrams and their interpretations, which compose nicely:

|00〉 〈0| + ei·0 |11〉 〈1|

α |+〉 〈++| + eiα |−−〉 〈−|

The interpretation of the composed diagram is:

α (|+〉 〈++|+eiα |−−〉 〈−|) · (|00〉 〈0|+ei·0 |11〉 〈1|)

Parallel combination is represented via the tensor product of vector spaces [Wet20].

Example 2.28: Parallel combination interpretation

We again consider these two simple diagrams and their interpretations:

|00〉 〈0| + ei·0 |11〉 〈1|

α |+〉 〈++| + eiα |−−〉 〈−|

The interpretation of the composed diagram is:

α (|00〉 〈0| + ei·0 |11〉 〈1|) ⊗ (|+〉 〈++| + eiα |−−〉 〈−|)

We consider a circuit example similar to before and its representation as a ZX-diagram in
Figure 2.5. The conversion is done by keeping wires the same and replacing gates with the
corresponding ZX-generators. Notice that we choose U exactly such that it corresponds
to a Z-spider. This is not in general the case, for more complicated unitaries we might
have to first construct a ZX-subdiagram representing said unitary.

23

2. Basics

|0〉 H

|0〉 U(−ϕ) U(ϕ)

|1〉 H U(β)

(a) Quantum circuit

ϕ

β

−ϕ

(b) Equivalent ZX-diagram

Figure 2.5.: Example conversion from quantum circuit to ZX-diagram

Note that in our diagrams we will sometimes use transparent squares labelled with a
matrix. These squares are not to be understood as generators of ZX-calculus. They
are merely a shorthand to represent an arbitrary diagram with the labelling matrix as
interpretation. This is following the representation of gates in quantum circuits.

2.4.3. How to modify diagrams
Diagrams can be changed in a consistent way in two fundamentally different ways. The
first way is less intrusive: ZX-diagrams follow the rule that Only connectivity matters
[Wet20]. This nice slogan means that elements of ZX-diagrams may be arbitrarily moved
around on the plane, as long as the order of the inputs and outputs does not change
[Wet20].

α

β

...
...

...
= α+ β

...
...n m

n

m

...
...

...
...

==

π α = -α
π

π

...
...

eiα

= √
2

= 1
2

α
... n = ... n1√

2n−1
=

Identity removalHadamard self inverse

State copy Colour change

π commutation

Spider fusionBi-algebra

Hopf

Figure 2.6.: ZX-calculus rewrite rules, including global phases

The second one are a number of rewrite rules which actually change generators present
in the diagram. There are various rewrite rules and different authors use different sets
which all basically accomplish the same [Wet20]. We present a subset of rewrite rules
given in [SH22] in Figure 2.6. These have some nice properties, which we discuss in the

24

2. Basics

next section. Included in the formulation are global phases1 rules. We introduce these
since global phases are relevant for our application. Typically global phases are dropped,
since they are irrelevant for most applications [Wet20]. All these rules also hold with the
colours exchanged, also α and β may take any value in R [Wet20].

ϕ

β

−ϕ

(a) Example ZX-diagram representing cir-
cuit from before

ϕ + (−ϕ)

β

(b) After spider-fusion

β

(c) After realizing ϕ + (−ϕ) = 0

β

(d) After Hadamard colour swap

β

(e) After spider-fusion and de-fusion in the
other direction

|0〉 H

|0〉

|1〉 U(β) H

(f) Quantum circuit

Figure 2.7.: Example derivation using ZX-calculus

As an example for how to apply these rules consider Figure 2.7. Here we first use the
spider-fusion rule to see that we can drop both U(±ϕ) gates. We then flip the colour on
the U(β) spider by introducing some Hadamard spiders. This gives us that the circuit
in Figure 2.5a is equivalent to the quantum circuit pictured in Figure 2.7f. That both
circuits are equal was not clear from their circuit representation, but in ZX-calculus the
identity was fairly clear.

2.4.4. Soundness, universality and completeness
After these definitions we might rightfully ask whether representing quantum systems in
this way is sensible. This question has three different facets which have answers of varying
complexity. Once all these questions have been answered, we see that ZX-calculus is a
useful and coherent tool to reason about quantum systems.

1These are represented as complex numbers without a spider in the diagrams.

25

2. Basics

Is ZX-calculus universal? The first question we ask can also be asked as Can we represent
any operator as a ZX-diagram? The answer to this question is indeed ’Yes’ but it goes
even further. We can actually represent any linear map between complex vector spaces as
a ZX-diagram. This has been shown as the property that ZX-calculus is universal [Wet20].
We present a sketch of the proof taken from [Wet20]:

First we show that we can represent arbitrary scalars as ZX-diagrams. For this observe
these identities:

α = √
2= 2

= 1√
2

α π = √
2eiαπ = 0

α = 1 + eiα

It suffices to show, that we can represent any x ∈ C with |x| < 2, since for larger x we
choose y such that x = y ·

√
2k for k ∈ N and just represent y. Now we show we can

represent each such y. Then choose α such that |y| = |1 + eiα|, so we get y
1+eiα = eiβ for

some β. This yields y = (1 + eiα)(
√

2eiβ) 1√
2 . So we can represent arbitrary scalars.

In order to now show universality, we need to see that we can represent some universal
operator set. The set we choose before in Section 2.2 contains Hadamard, phase, CNOT
and π/8 gates. By checking interpretations, notice that we can easily represent the one
qubit gates. The CNOT gate can be represented as , that can be verified by
checking the interpretation as well. Once we represent a universal operator set, we can
represent arbitrary unitary operators.

Is ZX-calculus sound? This question can be informally asked as: Do the rewrite rules
keep the interpretation of a diagram invariant? If the rewrite rules would not keep the
interpretations invariant, the calculus would not be very useful as modifying the diagram
would modify the underlying map. This concept is called Soundness of the ZX-calculus. It
has been proven, that ZX-calculus is sound [Wet20]. Showing separately for each rewrite
rule that it does not change the interpretation of the diagram is a rather tedious process,
so the proof is out of scope.

Is ZX-calculus complete? The last question we need to answer is whether using ZX-
calculus with a given set of rewrite rules can proof any true equation (in our context).
This property is known as completeness. Of the three we currently talk about, historically
completeness is the on that took the longest to proof [Wet20]. There are several different
sets of rewrite rules for which completeness has been proven [JPV18; HNW18; Wet20]. A
historic overview is out of scope but can be found in [Wet20]. The rule set we defined is
(to our knowledge) not complete, since we only present rules we will use in the following.
It is a subset of the rules used by [HNW18], so by extending our rules set we could make
the calculus we use here complete.

2.4.5. Linear combinations in ZX-calculus
Linear combinations of ZX-diagrams have been introduced by Stollenwerk et al. in [SH22].
They added a new symbol to ZX-calculus used to encode sums of diagrams [SH22].

26

2. Basics

Definition 2.29: Sum notation

In this figure a and b are complex scalars for the diagrams and A and B are unitary
operators which can be represented as ZX-diagrams.

[SH22]

In addition to the diagrammatic definition we also define how the sums are to be inter-
preted. Each term of the sum is a ZX-diagram and therefore has an interpretation. The
interpretation of the sum is given by the interpretations of the terms as their sum. In
addition to this definition they also introduced two rewrite rules. [SH22]

The first rule basically means that if all terms of the sum have wires connecting both ends,
those wires may be pulled out of the sum. This is a special case of our sum distributing
over the tensor product.

Definition 2.30: Diagram Pull Rule

[SH22]

Additionally Stollenwerk et al. introduced the Product (Composition) Rule. In matrix
terms we can write this as (A + B) · (C + D) = AC + AD + BC + BD.

27

2. Basics

Definition 2.31: Product (Composition) Rule

[SH22]

Both of these rules are then used in [SH22] to simplify symbolic ZX-diagrams. Though
formal verification that these rules actually hold is omitted in [SH22].

2.4.6. Category theoretic view
In the previous section, ZX-calculus was presented with a focus on how it can be used.
This section will introduce the formal foundations this usefulness is built upon.

First we need to define which category we are working with:

Definition 2.32: Category ZX

• objects Ob(ZX) = N
• morphisms from n to m are ZX-diagrams with n inputs and m outputs

[Wet20]

We now need to check that this is actually a category. This fact is known in literature,
for example in [Wet20], but we still check the axioms here:

1. Each arrow has domain and codomain as the number of inputs and outputs respec-
tively

2. We compose arrows by composition of diagrams. The interpretation is matrix mul-
tiplication, as defined above, since ZX-diagrams are freely generated this is still a
valid ZX-diagram

3. The identity arrow for n ∈ Ob(N) is given by the diagram that has just n wires.
These obviously always exist.

4. Since matrix multiplication is associative our composition is as well.

28

2. Basics

5. Empty wires can be contracted on the left and on the right, so our identity arrows
fulfil the unit axiom.

An observant reader may have noticed that this definition does encode composition, but
not tensoring diagrams. We can formalize tensoring diagrams using the structure of a
monoidal category [Wet20]. ZX together with the kronecker product fulfil the required
axioms since it is the tensor product of vector spaces of C.

Lemma 2.33: Category ZX is strict monoidal

We show that ZX is a strict monoidal category with following data:
1. as category we use ZX
2. the bifunctor ⊗ : ZX × ZX → ZX, defined by

• on objects: a ⊗ b = a + b
• on arrows: by writing them above one another, taking as interpretation

the tensor product on complex vector spaces
3. the unit object given by 0 ∈ ZX
4. the associativity isomorphism is the identity, since addition in N = Ob(ZX)

is associative
5. since 0 is the neutral element of addition the left and right unit isomorphisms

are the identity
[Wet20]

It is fairly natural to consider two diagrams as, in some sense, equal if they have the same
interpretation as matrices. This is exactly what the next definition does:

Definition 2.34: Interpretation equivalence relation

We define an equivalence relation on the morphisms of ZX. Two morphisms f and
g are equivalent if and only if their interpretation is equal, more formally [f] = [g].
We then write f ≈ g
[Wet20]

With this definition we go on to define another useful category.

Definition 2.35: Category ZX/∼

• objects Ob(ZX) = N
• morphisms equivalence classes of ZX-diagrams from n to m

Two ZX-diagrams from ZX are equivalent if they are related by the equivalence
relation given in Definition 2.34. In a complete calculus this is equivalent there
existing a sequence of application of rewrite rules that transforms one into the
other.
[Wet20]

We make this into a monoidal category by using the same structure as we did for ZX.

29

2. Basics

Lemma 2.36: Category ZX/∼ is strict monoidal

We show that ZX/∼ is a strict monoidal category with following data:
1. a category we use ZX/∼

2. the bifunctor ⊗ : ZX/∼ × ZX/∼ → ZX/∼, defined by
• on objects: a ⊗ b = a + b
• on arrows: by writing them above one another, taking as interpretation

the tensor product on complex vector spaces
3. the unit object given by 0 ∈ ZX/∼

4. the associativity isomorphism is the identity, since addition in N = Ob(ZX/∼)
is associative

5. since 0 is the neutral element of addition the left and right unit isomorphisms
are the identity

The thing that remains to be checked is that this is well-defined. Since we only
changed the arrows to be equivalence classes without changing the interpretation
this is rather clear.

An important fact concerning these definitions and our example MatC from before is the
following:

Lemma 2.37: Categories ZX/∼ and MatC are equivalent

We show the statement by giving a functor between the categories, which is faithful
and full. Let F : ZX/∼ → MatC such that:

• Since Ob(ZX/∼) = N = Ob(MatC) on objects we take the identity on N
• F maps a ZX-diagram f to its interpretation [f] ∈ MatC, which is a morphism

in MatC
Proof: First we show that F is faithful. Let f, g be morphisms in ZX/∼, with
F (f) = F (g). So we have [f] = F (f) = F (g) = [g], so the interpretations are equal.
Then by definition of ∼ f and g are in the same equivalence class, so they are equal
in ZX/∼. Therefore F is faithful.
Second we show that F is full. Let [f] be an arbitrary morphism in MatC. Since
ZX-calculus is complete, the operator f , is the matrix representation for, can be
represented by a ZX-diagram, which we call f . In ZX/∼, f is representative of an
equivalence class, which F maps to [f]. So we constructed a preimage of [f], which
was arbitrary, so F is full.

Note that the functor used to show equivalence of the categories respects the monoidal
products just as one would suspect.

Defining how the sum notation introduced by Stollenwerk et al. fits into this formal
context is a main goal of this thesis and as such is discussed in Chapter 4.

30

2. Basics

2.5. Quantum Approximate Optimization Algorithm (QAOA)
QAOA is a variational quantum algorithm which has been developed to solve combina-
torial problems [FGG14]. It is our primary application, but not directly relevant for our
constructions so we will shortly describe the premise of the algorithm and refer the reader
to [FGG14] for a more complete introduction.

A combinatorial problem is typically described by an objective function C and some con-
straints which may not be violated by a valid solution [FGG14]. Out of the valid solutions,
we are searching for the one with the highest objective value C(x) [Cer+21]. In QAOA we
try to find values for parameters β and ϕ such that |β, ϕ〉 := U(β, ϕ) |+〉⊗n encodes a valid
solution of maximal cost [FGG14]. This is done by mapping some input state to a lowest
energy state of the so called problem Hamiltonian HP [Cer+21]. Mapping is achieved by
repeatedly applying the problem unitary eiϕlHP and the mixing unitary eiβlHM [Cer+21].
This gives total unitary U(ϕ, β) =

∏p
l=1 eiβlHM eiϕlHP [Cer+21]. A classical optimizer op-

timizes β and ϕ such that applying the circuit and measuring yields a (close to) optimal
solution [Cer+21].

A prominent question is what performance we can expect from this algorithm [SH22]. To
answer this question, it can be helpful to compute an analytical form for the expectation
value of some of the corresponding circuits [SH22]. In this work we only consider cases
with one iteration, so p = 1. One example of a combinatorial problem solvable with QAOA
is Max Cut [SH22]. We will consider circuits stemming from MaxCut problems in this
work.

Definition 2.38: Maximum Cut problem (MaxCut)

Instance: Undirected Graph G = (V, E) Problem: Find a cut in G with maximal
number of edges.
A cut is an edge set which is generated by ∅ 6= X (V as all edges, that have one
end in X and one end in V X. [Kor+11]

This problem can be solved using integer linear programming using the following formu-
lation:

Definition 2.39: Integer linear programm for MaxCut

Let G = (V, E) be an instance of the MaxCut problem, with n = |V |. Optimal
solutions are encoded as the optima of this linear program:

max 1
2

∑
1≤i<j≤n

cij(1 − yiyj)

s.t. yi ∈ {−1, 1} ∀1 ≤ i ≤ n

[Kor+11]

31

2. Basics

So we want to use QAOA to solve for optima of this integer linear program. To do so we
define our cost function expectation value as follows

〈C〉 = |E|
2 − 1

2
∑

u,v∈E

〈ZuZv〉

[SH22].

The involved diagrams for expectation value always have a similar structure in ZX-diagram
form [SH22]. Each vertex is represented as one qubit [SH22]. We want to compute an
assignment of the vertices to two disjoint sets that will generate a cut. The value of
a Z measurement is either -1 or +1, so the measured value on qubit i determines set
membership for vertex i.

For technical reasons that are out of scope, we can consider the contribution of each edge
separately [SH22].

v0

v3

v1

v2

Figure 2.8.: Example Graph

The structure of the diagrams for expectation value
for one contribution is easiest explained when con-
sidering an example, so observe the graph in Fig-
ure 2.8 and one corresponding diagram in Figure 2.9.
The diagram represents the contribution of the edge
from v2 to v3 to the expectation value of the QAOA
state 〈Zv2Zv3〉. We see that first all edges of the
graph are added to the diagram using so called phase
gadgets [SH22]. Further, we add single X-spiders
to each qubit to represent the mixing Hamiltonian
[SH22]. Then two Z-spiders for v2 and v3 are appended, these represent the edge itself.
Afterwards, we again add the X-spiders for the mixing Hamiltonian and all edges using
phase gadgets, but this time with negated phases, representing the adjoint unitaries. For
further details see [FGG14; SH22; Cer+21].

-2ϕ

-2ϕ-2ϕ

-2ϕ

-2β

-2β

-2β

-2β

π

π

2β

2β

2β

2β

2ϕ

2ϕ 2ϕ

2ϕ

v0

v1

v2

v3

〈+|⊗4 |+〉⊗4Zv2 Zv3 eiβHMe−iβHMe−iϕHP eiϕHP

Figure 2.9.: Diagram for the QAOA expectation value 〈Zv2Zv3〉

Analytical expressions of these expectation value diagrams are helpful in analysing the
performance of QAOA MaxCut [BK21].

32

3. Related Work

Linear combinations in diagrammatic reasoning for quantum applications have only re-
cently been studied. Therefore, there is only some related work which can be clustered
into three main topics. The first is the category theoretic approach dealing with monoidal
categories without considering an interpretation. The second are works also introducing
sums into ZX-calculus using theoretical approaches different from the one chosen here.
The third and last one are works which try to achieve the same goal of circuit simplifi-
cation as we do also using ZX-calculus but with other methods. We will shortly present
them in the following and also note features which are similar to the approach chosen here
or are distinctly different.

Monoidal categories with sums In [CDH20] Comfort et al. consider rig categories and
diagrammatic representations of arrows in these categories. In short a rig category is a
category with two monoidal structure which distribute over another up to unique isomor-
phisms [CDH20]. [CDH20] presents different approaches from literature to visualize these
diagrams in the plane and in three dimensional space. They also develop their own rep-
resentation in three dimensions called sheet diagrams [CDH20]. The additional structure
is encoded by the diagram not living on the euclidean plane [CDH20]. Sheet diagrams
live on topological manifolds with boundaries in R3 [CDH20]. An example taken from
[CDH20] can be see in Figure 3.1. In contrast to the categories considered in this work,
rig categories not only admit combining compatible morphisms using the monoidal struc-
tures. This makes the representation not directly feasible to be used in the application
considered here, since arbitrary restrictions would have to be introduced. Also for our
applications reasoning about the diagrams with sums by hand on paper is feasible and an
expected use case. This also makes the three dimensional representation less suitable for
solving the problems considered in this thesis.

Figure 3.1.: Example of sheet diagram composition; taken from [CDH20]

33

3. Related Work

Sums in ZX Several works published recently also introduce notions of sums in ZX-
calculus [JPV22; WY22; SWY22].

Jeandel et al. proposed a notion of addition and differentiation of ZX-diagrams in [JPV18].
The primary use case they describe is akin to the one described here, as they also consider
variational algorithms, such as QAOA [JPV22]. They also try to solve the problem of
making ZX-calculus useable for applications with parameterized quantum circuits [JPV22].
Their construction relies on controlled diagrams1, which are build from controlled states
[JPV22]. The construction has the upside of being entirely contained in vanilla ZX-calculus
which allows for manipulating the diagrams using the rewrite rules of normal ZX-calculus
[JPV22]. One downside of this construction using controlled diagrams is that the resulting
diagrams are fairly large, already for small input diagrams [JPV22]. Our approach does
not have this downside, but our sums are not part of vanilla ZX-calculus, so we have to
define new rewrite rules to manipulate the diagrams.

In [SWY22] Shaikh et al. introduced a calculus, called ZXW calculus, analogously to
ZX-calculus. This calculus is similar to ZX, but uses a different basis [SWY22]. Namely
they use the basis of GHZ and W states, but also define their diagrams as all diagrams
freely generated over a set of generator [SWY22]. The GHZ and W states are different to
the Z and X states in the regard that Z and X are basis elements of the same basis, while
GHZ and W are not connected in this way [SWY22]. In this calculus they first show how
to use controlled gates and controlled states to build controlled diagrams [SWY22]. These
definitions are then used to define formal sums of diagrams of a specific type [SWY22]. In
contrast to the work presented here it does not allow for sums of arbitrary diagrams. They
also do not explicitly allow for linear combinations. The type of diagram they consider
for summation represent Hamiltonians [SWY22]. They also define how to calculate eAt

for an arbitrary matrix A as a diagram [SWY22]. Both formal sums and exponentiation
are useful for improving Hamiltonian simulation [SWY22].

Another approach is presented in [WY22] by Wang et al. which also uses W spiders to
represent sums. Their focus is on enabling differentiation of ZX-diagrams and they also
introduce notions for integrating certain types of diagrams. In order to define the product
rule for differentiation they use W-spiders to avoid having a sum of diagrams in the result.
Sums of diagrams are not the focus of their work. Instead they directly replace the sums
arising due to the product rule by a diagram where the sum structure is represented using
W-spiders. Their solution does therefore not solve the problem posed in this work, where
sums of diagrams are partially being introduced as a tool for manual rewriting. [WY22]

Circuit Simplification using ZX-calculus There exists some previous work on simplifying
circuits using ZX-calculus [Dun+20; BPV21]. One example is [Dun+20], the authors
introduce a graph theoretic simplification algorithm for quantum circuits. To this end
they convert the circuit to a diagram and simplify this while preserving a property called
generalized flow [Dun+20]. They also present a procedure for extracting circuits from
ZX-diagrams which have the generalized flow property [Dun+20]. Their work is focused
on simplifying the diagram and then getting circuits back out [Dun+20]. This is a stark
contrast to the work done here, since our goal is to simplify the diagram entirely to

1Which are diagrams with an extra input, where a |1〉 gives a diagram with some value and a |0〉 gives a
neutral diagram.

34

3. Related Work

an analytical expression. Second we consider symbolic phases, which Duncan et al. do
not explicitly do. Also both new rewrite-rules they introduce, local complementation and
pivoting, depend on the existence of Clifford spiders2 [Dun+20]. Since we consider symbolic
phases these rewrite rules may not be as effective as in their cases.

Another work based on [Dun+20] is [BPV21] by Borgna et al. They extend Duncan’s work
by considering hybrid circuits [BPV21]. Those are circuits which also include classical
components and measurements [BPV21]. To this end they use ZX , an extension of
ZX-calculus which allows easier description of interactions with the environment [BPV21].
They define a conversion from hybrid circuits to ZX -diagrams, which also have the
property of generalized flow [BPV21]. As well as [Dun+20] their goal is to simplify in
(a dialect of) ZX-calculus and then extract simplified circuits back out [BPV21]. Since
their approach builds on [Dun+20] we differentiate our work in a similar manner, since
we consider symbolic phases and simplification to an analytical expression.

2Clifford spiders are spiders where the phase is a multiple of π
2

35

4. Linear Combinations of ZX-diagrams

In this chapter we will first cover in depth the motivation for introducing linear com-
binations into ZX-calculus. For this motivation we will derive desired properties our
construction should aim to fulfil. Then we will introduce the actual formal construction
building on the theory presented in Chapter 2.

4.1. Motivation
As we have seen in the introduction of ZX-calculus it is proven to be complete. Mean-
ing that any two equivalent diagrams can be transformed into another using the rules
presented above. This directly leads to the question what allowing linear combinations
brings to the table. To illustrate the usefulness of the extension consider the example
in Figure 4.1. Since it has no input and no output wires it represents a complex phase.
This phase is dependent on the parameters ϕ and β. An interesting question for applica-
tions in variational algorithms is now to compute a term depending on these parameters
representing the complex number the diagram represents [SH22].

-2ϕ

-2ϕ-2ϕ

-2ϕ

-2β

-2β

-2β

-2β

π

π

2β

2β

2β

2β

2ϕ

2ϕ 2ϕ

2ϕ

Figure 4.1.: Simple QAOA circuit as ZX-diagram [SH22]

As we have noticed in Chapter 3 state of the art simplification algorithms for ZX-diagrams
all have at least one of two limitations. They can either not simplify with symbolic spiders
or the they cannot track the global phase of a diagram whilst simplifying. Note that due
to ZX being complete this is not a limitation of the calculus itself, but of the simplification
algorithms. Regardless it can be beneficial to introduce further tools for rewriting diagrams
which may simplify the procedure. Exactly that has been done in [SH22] where the authors
simplified said example by hand using the notion of linear combinations of ZX-diagrams.
As demonstrated there it can be a useful tool for simplifying ZX-diagrams whilst tracking
the global phase. In this chapter we try to formalize this notion of linear combinations
to later make use of it when proposing a general simplification algorithm for diagrams of
similar shape to the one in Figure 4.1.

36

4. Linear Combinations of ZX-diagrams

4.2. Formal Construction
We split the problem of formally constructing linear combinations of ZX-diagrams in two
parts. First we will describe how we can realise scalar multiplication. The second part will
then be defining sums of diagrams. In combination these two parts allow us to represent
arbitrary linear combinations.

4.2.1. Scalar multiplication
As a first building block we clear up how to realise scalar multiplication. To do so we first
observe that in our particular category ZX the tensor product is the kronecker product.
With this we see the following lemma:

Lemma 4.1: Scalar multiplication

Let f be a ZX-diagram with interpretation (ai,j)i<n,j<m and let x be a complex
scalar. By universality of ZX the 1 × 1-matrix [x] can be represented as a ZX-
diagram, say g. Scalar multiplication of f with x can be realised as f ⊗ g.

Proof The interpretation of f ⊗ g is:

(an,m)n,m ⊗ [x] = (x · an,m)n,m = (an,m)n,m · x

which is the interpretation of f · x.

Note: Since everything is defined over C multiplication is commutative and scalar multi-
plication from the right follows directly.

4.2.2. Sums of diagrams
The second building block we need is addition of two ZX-diagrams. To do so we introduce
a superposition rule + on ZX/∼. So for this subsection let f and g be representatives for
arbitrary ZX-diagrams each with n inputs and m outputs.

Definition 4.2: Sums of ZX-diagrams

We define addition of diagram equivalence classes by taking representatives f and
g as

= Σ Σ

f

g

f g+ ..
.

..
.

..
.

..
.

..
.

..
. ..

.

..
.

..
...
.

The interpretation of the right hand site we define as the sum of interpretations so
[f] + [g].

37

4. Linear Combinations of ZX-diagrams

Note: We sometimes use a slightly adapted notation, where each term of the sum is
contained in a grey bubble. The bubbles are then only connected to the Σ spider with
one wire, since the number of connections is clear from context. The following example
illustrates the utility of this more concise notation.

Example 4.3: Sum notation

We present an example of our sum notation, just to present its usefulness without
considering the diagrams interpretation.

π

πα
+ = Σ Σ

π

π

α

Definition 4.2 is well-defined since we are working in ZX/∼: Consider taking different
representatives f ′ and g′, with [f] = [f ′] and [g] = [g′]. Then [f] + [g] = [f ′] + [g] =
[f ′] + [g′], so the interpretations of the sums are also only different representatives of the
same equivalence class.

We will now see some important properties of this definition.

Lemma 4.4: Sums are commutative

Given morphisms f, g in ZX/∼ we have:

g

f

Σ Σ ...

...

...

...

...

...

m
m

m

n

n
n

f

g

Σ Σ ...

...

...

...

...

...

m
m

m

n

n
n=

Proof We only need to check that the interpretation stays equivalent. The inter-
pretation for the left hand side is [f] + [g] and for the right hand side [g] + [f]. By
commutativity of matrix addition these are equal.

Lemma 4.5: Sums are associative

Given morphisms f, g in ZX/∼ we have:

(f + g) + h = f + (g + h)

Proof We only need to check that the interpretation stays equivalent. The in-
terpretation for the left hand side is ([f] + [g]) + [h] and for the right hand side
[f] + ([g] + [h]). By associativity of matrix addition these are equal.

38

4. Linear Combinations of ZX-diagrams

With these properties we can now go on to one of our main results:

Theorem 4.6: Sums are a superposition rule

The addition from definition 4.2 is a superposition rule, with uA,B a diagram with
the zero matrix as interpretation.

Proof First we observe that we can always construct uA,B by taking an arbitrary
diagram from A to B and multiply via scalar multiplication as defined above with
0. We now check the properties independently.

• f + g = g + f ,
I is the statement of Lemma 4.4

• (f + g) + h = f + (g + h)
I is the statement of Lemma 4.5

• for all A, B ∈ Ob(ZX/∼) there is a A
uA,B−−−→ B, such that for all A

f−→ B:
f + uA,B = f
I interpretation of uA,B is the zero matrix by construction which is the

neutral element of matrix addition
• (g + h) ◦ f = (g ◦ f) + (h ◦ f)

I follows from distributivity of matrix addition and multiplication
• f ◦ (g + h) = (f ◦ g) + (f ◦ h)

I follows from distributivity of matrix addition and multiplication
• for all f : A → B and C, D ∈ Ob(C): uC,B = f ◦ uC,A and uA,D = uB,D ◦ f

I since uA,B and uC,D both have the zero matrix as interpreation by con-
struction they are equivalent, so represent the same morphism in ZX/∼

All properties are fulfilled so this addition is a superposition rule in ZX/∼.

Corollary 4.7: MatC has a superposition rule

MatC also has a superposition rule given by matrix addition.
We have seen, that we can define sums of diagrams in such a way that it’s inter-
pretation coincides with the definition of matrix addition. Together with the fact,
that we can scale diagrams arbitrarily this gives us arbitrary linear combinations of
ZX-diagrams.

To formally make use of the above construction we first proof some properties the category
fulfils. This will allow us to later use the category in a powerful way.

Lemma 4.8: ZX/∼ admits arbitrary duals

Each A ∈ Ob(ZX/∼) is its own left and right dual. In particular ZX/∼ admits
arbitrary duals.

Proof This follows directly from Example 2.19, by using the equivalence defined
in Lemma 2.37.

39

4. Linear Combinations of ZX-diagrams

Theorem 4.9: ZX/∼ admits arbitrary biproducts

In ZX/∼ for each two objects A1, A2 ∈ Ob(ZX/∼) = N exists an biproduct A1 ⊗A2 =
A1 + A2. Where addition is to be understood as the standard addition in N. The
injection and projection morphisms are constructed as follows: Identify A1 and A2
with CA1 and CA2 in MatC. And take the matrices, which represent the morphisms
constructed in Lemma 2.37. Then the morphisms in ZX/∼ are by universality of ZX
given by arbitrary representatives of the equivalence classes related to the matrices.

Proof The above construction is well-defined since the functor from ZX/∼ to MatC
is an equivalence by Lemma 2.37. It remains to be shown, that the construction
above actually is a biproduct. All the properties follow directly as in the proof of
Example 2.17.

With these two properties we see the following theorem:

Theorem 4.10: Addition in ZX/∼ distributes over kronecker product

Sums of equivalence classes of ZX-diagrams in ZX/∼ as defined in Definition 4.2
distribute over kronecker product. So for f and g representatives of arbitrary com-
patible equivalence classes of morphisms we have:

(f + g) ⊗ h = (f ⊗ h) + (g ⊗ h)

h ⊗ (f + g) = (h ⊗ f) + (h ⊗ g)

Proof: By Theorem 4.9 we have arbitrary biproducts. By Lemma 4.8 ZX/∼ also ad-
mits arbitrary duals. Then by Lemma 3.22 in [HV19] we have that the superposition
rule distributes over the monoidal action of the category.

A diagrammatic view of this distributivity law can be found in Figure 4.2.

g

f

h

Σ Σ ...

...

...

...

...

...

...
...j k

m
m

m

n

n
n

= Σ
...

...j+m k+n

h
g

...

...

j

m ...

... k

n

Σ

h

f

...

...

j

m ...

... k

n

Figure 4.2.: Diagrammatic statement of the second statement of Theorem 4.10

40

4. Linear Combinations of ZX-diagrams

4.3. Proofs of equivalence
After observing the above properties we will first see that this construction has exactly
the properties introduced in [SH22]. Second some properties which are true for vanilla
ZX-calculus are verified to still be true for our extended calculus.

4.3.1. Rules from Stollenwerk et al.
In Section 2.4.5 rules to manipulate sums of diagrams postulated by Stollenwerk et al.
were presented. We need to check that these rules also work in our extended calculus.
In [SH22] the rules are formulated with explicit scalars for each term of a sum. As we
represent these scalars in the diagrams we drop them from our description.

Consider first the diagram pull rule: It states that the kronecker product of diagrams
distributes over sums of diagrams, with respect to the matrices the diagrams represent.
More formally:

Theorem 4.11: Diagram pull rule

For A, B morphisms in ZX/∼ with the same domain and co-domain and Idp the
identity morphism of p ∈ Ob(ZX/∼), we have:

[(Idp ⊗ A) + (Idp ⊗ B)] = [Idp ⊗ (A + B)]

Proof Since the kronecker product is the monoidal operation of the category ZX/∼

and Idp is in particular a morphism in ZX/∼ this identity was shown as Theo-
rem 4.10.

So we see that the diagram pull rule is true in our extended calculus. Furthermore,
we notice that the formulation in Theorem 4.10 is strictly stronger than the one from
Stollenwerk et al.

Now consider the product rule: It states that composition distributes over addition. So
more formally we get:

Theorem 4.12: Product rule

For morphisms A : m → n B : m → n C : n → l we have:

(A + B) ◦ C = (A ◦ C) + (B ◦ C)

A ◦ (B + C) = (A ◦ B) + (A ◦ C)

Proof Distributivity is an axiom of addition being a superposition rule and was
therefore checked in Theorem 4.6.
For a diagrammatic view of the first rule see Figure 4.3.

Note that in the original formulation by Stollenwerk et al. also included a morphism
D : n → l. We now show that that formulation is equivalent, to our more concise
variation.

41

4. Linear Combinations of ZX-diagrams

g

f

hΣ Σ

...

...

...

...

...

...
...n km

m

m

n

n
= Σ

...
...m k

hg...m ...
... kn

Σ

hf
...m ...

... kn

Figure 4.3.: Diagrammatic statement of the product rule Theorem 4.12

Lemma 4.13: Product rule and distributivity over composition are equiv-
alent

Let f, g, h, k be morphisms in some strict monoidal category, where + is a superpo-
sition rule and ◦ denotes composition. Then the Product (composition) rule given
by Stollenwerk et al. as in Definition 2.31 holds if and only if addition distributes
over composition, as proven in Theorem 4.12.

Proof We show the directions separately.

⇐ Suppose distribution of composition over addition is given. Then consider the following
equations, where we apply distributivity twice and uses that composition of morphisms
gives again a morphism.

(f + g) ◦ (h + k)
=(f ◦ (h + k)) + (g ◦ (h + k))
=(f ◦ h) + (f ◦ k) + (g ◦ h) + (g ◦ k)

⇒ Suppose the product pull rule holds. We want to see that the distributivity law holds
in both directions. The neutral element of addition is any morphism that has as inter-
pretation the zero map. By universality of ZX-calculus we can always choose 0 as such in
a compatible manner. For any compatible morphisms f, g, h, we see by first inserting a
zero, then using the product rule and then by using the neutral element of addition (and
its properties in multiplication) again:

(f + g) ◦ (h)
=(f + g) ◦ (h + 0)
=(f ◦ h) + (g ◦ h) + (f ◦ 0) + (g ◦ 0)
=(f ◦ h) + (g ◦ h) + (0) + (0)
=(f ◦ k) + (g ◦ k)

42

4. Linear Combinations of ZX-diagrams

Similarly for the other direction we get:

(f) ◦ (h + k)
=(f + 0) ◦ (h + k)
=(f ◦ h) + (0 ◦ h) + (f ◦ k) + (0 ◦ k)
=(f ◦ h) + (0) + (f ◦ k) + (0)
=(f ◦ k) + (f ◦ k)

This gives both distribution laws.

These two rules are the ones stated by Stollenwerk et al. and our extended calculus also
fulfils them. So our extension is compatible to all further considerations done in [SH22].
Furthermore, our description is more concise and in some regards even stronger than the
original formulation.

4.3.2. Further useful rules
Some rules we deem useful and reasonable are not explicitly stated by Stollenwerk et al.
Therefore, we extend the rule set by some rules we find convenient; some of which we
introduced previously.

Recall Lemma 4.4, we have shown that sums of diagrams are commutative. A fact not
explicitly stated in [SH22]. This rule is practical since it continues the slogan Only con-
nectivity matters, that is prominent with vanilla ZX-calculus. Since this rule shows that
the order of the bubbles in a sum does not matter.

Lemma 4.14: Sums with only one term can be dropped

For any morphism f in ZX/∼ we have:

fΣ Σ ...
...

...
...m m n n = f

... n...m

Proof It again suffices to check the equality of the interpretations. Since for
matrices

∑1
i=1[f] = [f] this also holds for diagrams.

Another interesting property is that for any diagram f we can find an diagram representing
the additive inverse of f .

Lemma 4.15: Additive inverses exist

For any morphism f in ZX/∼ we can find a morphism g such that their sum can be
dropped.

Proof Consider the interpretation [f] and the matrix −1 · [f]. For this second
matrix we can find a diagram representing it by universality. By definition of
matrix addition we see that [f] − [f] = 0.

43

4. Linear Combinations of ZX-diagrams

4.3.3. Properties of the extended calculus
Three properties, which we also checked for vanilla ZX-calculus are interesting to have for
a calculus in general.

Universality Since ZX-calculus is universal, our extension is as well. For any linear map
A the matrix representation [A] can be implemented as a ZX-diagram. So in order for
our extended calculus to be universal, the extension is not even needed. Therefore our
extended calculus is also universal.

Soundness ZX-calculus with the rewrite rules defined in Figure 2.6 is sound. So those
rewrite rules do not change the interpretation of the diagram. Since they can only be used
in terms of the sum and not over the terms of a sum, they stay sound in the extended
calculus. What we need to check is that the rewrite rules we introduce for linear com-
binations are also sound. For all rules we introduce we have checked this directly after
introducing them in the previous section. These rules do hold on a category theoretic level
and therefore do not change the interpretation of the diagram. So the extended calculus
is still sound.

Completeness The last property left to consider is completeness. As it was with vanilla
ZX-calculus it turns out to be the hardest to consider. First we notice that the rules
from Stollenwerk et al. on their own are certainly not enough since they are missing
commutativity of sums. Furthermore, we notice that our current rule set is still not
complete. Consider the following rather trivial example: Let α, β ∈ C and consider
diagrams A and B which represent the 1 × 1 matrices [α] and [β]. Their sum is a diagram
representing [α + β], which exists by universality of ZX-calculus. So if our rule set was
complete we would have to be able to transform the diagram representing the sum of A
and B to this diagram, which has the same interpretation. But with the current rule set
we have no way of achieving this. Therefore, we leave introducing the needed rewrite rules
and a concrete proof of completeness as future work.

44

5. Implementation

This chapter will detail our how we implement linear combinations and outline the devel-
oped algorithm for simplifying symbolic ZX-diagrams to an analytical expression. These
are our solutions to the second and third goal of this thesis. We first outline the steps
taken in order to implement linear combinations in software. For this purpose we will
first present some frequently used frameworks that work with ZX-calculus and present
reasoning as to why one of them was chosen above the others to extend. Then we discuss
details of the introduction of linear combinations into the implementation; demonstrating
our solution to the second goal. Lastly we will present an algorithm designed to simplify
ZX-diagrams representing circuits from QAOA problems using said implementation. This
is proposed as a solution to the third goal.

5.1. Framework selection
Three frameworks were considered as candidates for the implementation of the rewriting
algorithm: PyZX [KW20], DisCoPy [FTC20] and Quantomatic [pro18]. We now shortly
introduce each one and then present our reasoning for the choice we make.

PyZX The framework by Kissinger et al. is written in python built exclusively for ZX-
calculus [KW20]. It can represent arbitrary ZX-diagrams and has several rewrite rules
and simplification strategies built in [KW20].

At the start of our work it did not have support for symbolic computations. Said support
was added later by integrating the python library sympy [Yeu22]. At the time of writing not
all features work correctly with symbols [Muu22]. Some of these issues are solved during
the implementation [Muu22]. Others are not resolved, this includes the simplification
strategies.

It has a simplification strategy specifically tailored towards reducing diagrams where the
global scalar is to be tracked called reduce_scalar.

DisCoPy DisCoPy is a framework developed for the more general setting, of reasoning
about diagrams from arbitrary monoidal categories [FTC20]. It has custom support for
ZX-diagrams built in, including conversion from and to PyZX diagrams. However rewrit-
ing ZX-diagrams directly according to rewrite rules is not supported. Therefore it also
does not provided simplification strategies.

Since DisCoPy is built for working in arbitrary monoidal categories the boxes can contain
any data. This includes native support for symbolic phases in ZX-diagrams.

45

5. Implementation

DisCoPy also has support for formal sums of diagrams. These formal sums always dis-
tribute outward completely meaning that the sum structure is always the most outward
operation.

Quantomatic Quantomatic has mostly been developed as a diagramatic proof assistant
for ZX-calculus [Kis12]. It focuses on supporting a user in rewriting diagrams manually
rather than rewriting for the user. As such it has built in rewrite rules for ZX-diagrams
but includes only a limited number of automated rewriting strategies. Additionally Quan-
tomatic does not have support for symbolic phases. Project activity levels for Quantomatic
suggest that it is not being actively developed at the time of writing [Git22].

Since we need support for symbolic computation we choose DisCoPy as a basis for our
work. Also it allows for flexibility since we can convert DisCoPy diagrams without sums to
PyZX diagrams. Quantomatic was not considered further since it cannot handle symbolic
phases. Furthermore the chances of our extension being accepted into the framework where
thought to be higher with an actively maintained project. Therefore we opted to combine
the strengths of DisCoPy and PyZX. So we decided to implement the sum structure in
DisCoPy, but convert the terms of the sums to PyZX for simplification purposes not
involving sum structures.

5.2. Implementation details
In order to understand the implementation of the sum structure we first discuss a simplified
version of the data structure DisCoPy uses to represent diagrams. Afterwards we present
the construction for local sums in this structure.

DisCoPy uses an object oriented approach for saving diagrams. Each object of a category
is represented as an object of the class Ob. The arrows are also represented as a class,
which in our simplified version can just be regarded as saving an arbitrary morphism. A
diagram is a sorted list of layers, where adjacency in the list represents composition. Each
layer contains a sorted list of arrows. Here adjacency represents the monoidal product.
An visual representation, depicting an example can be seen in Figure 5.1. DisCoPy does
support representing formal sums of diagrams. When using this construction sums are
always and automatically distributed outward. Sums are represented as objects containing
a list of terms.

In order to implement sums into DisCoPy we extended their notion of sums by a new
class called LocalSum. This class also contains a list of terms but can be used like any
other arrow and will not distribute outward. LocalSum and DisCoPy’s Sum class have
a common super class called AbstractSum. This abstraction makes it possible for Sums
and LocalSums to interact as one would expect and reduces duplicate code. Since the
LocalSum instances are just special cases of Arrows they fit in nicely with the diagram
structure DisCoPy uses. The quantum specific diagrams DisCoPy supports are special
cases of more general categories it can represent. As such it was sensible to implement the
LocalSums not only for the quantum categories, but also for all other categories DisCoPy
can represent. This allows for more flexibility in representing enrichment over monoids in
any use case for DisCoPy.

46

5. Implementation

Diagram
Layers

Arrows

Figure 5.1.: Diagram with parts annotated with the classes DisCoPy uses to represent
them

Distribution over composition was implemented analogously to the existing Sum class. In
monoidal diagrams the input and output of a sum are possible not only connected within
the sum, but maybe also on the outside. One has to take specific care to handle these cases.
These cases were not considered in DisCoPy previously since they do not arise when we
distribute the sum to the input and output layer. Reversing distribution over composition
was not implemented prior but has been implemented for this work. Distribution over
monoidal product was also not implemented prior to this work. We implement it for the
case where the LocalSum and the box to be pulled in are on the same layer. If this is
not given but mathematically distribution is possible it is necessary to first shift boxes
between layers. This shifting is also implemented.

In summary we have implemented sums in DisCoPy, which by the construction in Chap-
ter 4 directly gives us linear combinations. We have also provided implementations for
several important rewrite rules, in particular the ones given in [SH22].

5.3. Simplification Algorithm
We now turn to the third goal of this thesis; implementing a simplification algorithm.
In the following we present a prototype for a algorithm for simplifying ZX-diagrams for
QAOA MaxCut problems using linear combinations. First we introduce the general idea
of our simplification algorithm. Second we describe some subroutines we use frequently
throughout the algorithm. We then present the algorithm in detail and highlight some
properties. Last we discuss limitations and possible solutions.

5.3.1. Main Idea
As we discussed in Section 2.5 operators for QAOA MaxCut typically contain two param-
eters ϕ and β. The first is used in the problem Hamiltonian and the latter in the mixing
Hamiltonian. Typical circuits are therefore of the form described in Section 2.5.

47

5. Implementation

So as a ZX-diagram we have β spiders in the middle of the diagram and ϕ spiders in phase
gadgets on the outside of the diagram.

The algorithm is divided into two stages, each dealing with one of the symbols. The output
of the first stage are several diagrams, which only contain one symbol. These diagrams
are then run through the second stage separately. In the following we introduce the stages
in order of execution; in text form illustrating the steps on an example. Presentations in
pseudo-code can be found in Appendix A.1. Note that between all steps we run simple
simplification procedures, until these trivial measures fail to simplify further. We omit
mentioning these steps for clarity, but they are defined below.

Pull symbol to scalar stage

-2ϕ

-2ϕ

-2ϕ -2ϕ

-2β

-2β

-2β

-2β

π

π

2β

2β

2β

2β

2ϕ

2ϕ

2ϕ2ϕ

Figure 5.2.: Diagram to be simplified

In Figure 5.2 the initial diagram for our example can be seen. First we use spider fusion to
simplify the diagram (Figure 5.3). Further, we pull the β spiders into scalars by introducing
linear combinations.

π

π

-2ϕ

-2ϕ

-2ϕ -2ϕ

4β

4β

2ϕ

2ϕ

2ϕ2ϕ

Figure 5.3.: Diagram after π-spiders commuted through left β-spiders

This gives us a diagram where the only spiders depending on β are isolated (Figure 5.4).

48

5. Implementation

π

π

-2ϕ

-2ϕ

-2ϕ -2ϕ

2ϕ

2ϕ

2ϕ2ϕ

Σ Σ

π

cos β

i sin β

Σ Σ

π

cos β

i sin β

Figure 5.4.: Diagram with β-spiders pulled to scalar by introducing linear combinations

Now we uses distributivity over composition to pull everything into the sum terms. The
sum is now the outmost part of the diagram. This gives multiple diagrams only depending
on ϕ, which remain to be simplified. The second term of the sum is shown in Figure 5.5

π

π

-2ϕ

-2ϕ

-2ϕ -2ϕ

2ϕ

2ϕ

2ϕ2ϕ

πi sin β cos β

Figure 5.5.: Second term of diagram with β-spiders

Simplify terms with only one symbol stage

i sin (β) cos (β)
√

2−1

π

-2.0*phi

-2.0*phi-2.0*phi

π

2.0*phi

2.0*phi

2.0*phi

π

Figure 5.6.: Second term of the sum at the start of simplification

The dependency on ϕ in these diagrams is rather different in shape to the one β (Fig-
ure 5.6). Since the unitaries on the left and right are conjugates of one another we can
always match up phase gadgets of different sign. So we iterate the following procedure
until we have contracted the diagram to a scalar.

If we can we match up phase gadgets and simplified using the bi-algebra rule of ZX-calculus
(Figure 5.7).

49

5. Implementation

i sin (β) cos (β)
√

2−2

π

-2.0*phi

-2.0*phi π

2.0*phi

2.0*phiπ

(a) Before application

i sin (β) cos (β)
√

2−3

-2.0*phi

-2.0*phi

2.0*phi

2.0*phiπ

π π

(b) After application

Figure 5.7.: Bi-algebra rule application example in stage two

In any given iteration apply the bi-algebra rule does not produce a result we apply the
state copy rule if possible. Again if none of the above resulted in change we try copying
and commuting π-spiders through others.

The loop ends once none of these result in any change in the diagram. The remaining
diagrams are then returned to the main algorithm. It then computes the scalar of each
term separately and returns their sum.

Specific subroutines

Subroutines used within the simplification algorithm are described in the following. Used
rules which are not described here are used from PyZX implementation. In a graph
theoretic all these rewrite operations are algorithms replacing one subgraph with another.
To do so the main task is to identify the subgraph to be replaced. This problem is
called subgraph isomorphism problem and is NP-complete in general [Coo71]. So these
subroutines all try to use properties of the desired matches to speed up the process.

Basic simplification routine The basic simplification routine is run between all steps of
the simplification algorithm. It combines two rules PyZX provides; namely spider fusion
and identity removal. Those two rules are run in a loop until none of them simplifies the
diagram further.

Permute centre π-spiders This function searches for Z-spiders with a π phase which have
an X-spider with a symbolic phase to the right. Rather simply this is done by iterating
over all vertices and checking for the condition.

Pull symbolic phases to scalar Finding candidates for pulling phases into scalars is done
in a similar fashion to above. We iterate over all vertices and check whether the phase
contains the desired symbol. Once found we introduce a sum and pull the symbol to
scalars.

Combine sums The third subroutine is used to combine sums. More concretely we use
the distributing property of sums to perform the following operation:

(A + B) ⊗ (C + D) = A ⊗ C + A ⊗ D + B ⊗ C + B ⊗ D

The operation is performed until no more candidates are found.

50

5. Implementation

Bi-algebra replace We implement the bi-algebra replace rule only for a special case. The
implementation finds four cycles of the form that bi-algebra may be applied and replaces
it with two spiders which are connected. Finding these four cycles is done by first finding a
candidate sets of three vertices which form a line but not a triangle. Then the neighbours
of the outer two are compared and if they share a neighbour (which is not the one in
the middle) we found a cycle. We then check that all spiders in the cycle have colours
compatible with the bi-algebra rule. If so the cycle is replaced by two vertices and the
neighbours are connected according to the rule.

π-commutation rule The π-commutation rule is implemented by finding all spiders that
have a π phase and exactly two neighbours. This is done by exhaustion and all such
spiders are considered as candidates. The algorithm arbitrarily picks one and applies the
commutation rule to an arbitrary side.

5.3.2. Analysis
We first make some observations regarding the two stages of the algorithm. Stage one
is deterministic and certainly terminates, if the input is of the shape we expect. On the
other hand stage two has different properties. We make the observation that termination
of this algorithm is not guaranteed. The π-commutation rule can introduce new spiders
to the graph and so a cycle of rewrite rules could form.

#Vertices #Instances #Not completely simplified Max. vertex count in result
3 6 0 0
4 33 7 5
5 170 48 10
6 1170 369 13

Table 5.1.: Overview of experimental results

Additionally, we analysed our algorithm experimentally. For all graphs with 3, 4, 5 or 6
vertices ran the algorithm once for each edge. Running for each edge is reasonable since we
want to compute the contribution for each edge in the MaxCut problem. We observe that
the algorithm terminates in reasonable time (seconds on a commodity laptop computer)
for any of these instances. Furthermore, the algorithm always simplifies the diagrams up
to a tree shape, an example can be seen in Figure 5.8. Unfortunately it does not produce
a scalar as output in all cases. In 424 of the 1379 cases it outputs a tree shape. This tree
shape has a maximal size of 13 nodes. A detailed overview can be found in Table 5.1.

-4ϕ -4ϕ -4ϕ -4ϕ

-4ϕ-4ϕ

π

Figure 5.8.: Example of a tree residual the algorithm creates

51

5. Implementation

5.3.3. Limitations
The algorithm has several limitations which we discuss in the following. We also introduce
possible mitigations for the these shortcomings.

The first and most obvious shortcoming is that it only works for a very specific set of dia-
grams. It is only designed to handle circuits that arise from solving MaxCut using QAOA.
Circuits arising from other combinatorial optimization problems might have similar shape
but can also have completely different shapes. One may hope that the approach from our
prototype is also true in more general settings, but currently we have no strong indication
either way.

Our prototypes second limitation is that we cannot guarantee that the second stage ter-
minates. Since the π-commutation rule may increase the number of vertices cycles in
the rewrite procedure are conceivable. This limitation can be mitigated by including a
stopping condition if the diagram reaches a state it had already reached in a previous
iteration. Mitigating in this way has the drawback of having to track all previous states
which is memory intensive. Since in the tested examples including all graphs with 3, 4, 5
or 6 vertices the algorithm terminated we did not include this mitigation.

A further limitation is the fact that the second stage not always simplifies the circuit
completely. In 424 out of the 1373 tested cases we were left with a tree like diagram
that could not be simplified further. The maximum node count of these trees was 13, the
current mitigation is to compute the analytical expression of these trees via the matrix
interpretation. This might result in problems with larger examples. A different conceivable
solution would be to introduce further rewrite rules that allow for simplifying those trees.

52

6. Conclusion

In this thesis we investigate linear combinations of ZX-diagrams and how they can be
applied to the analysis of variational quantum algorithms. In particular our goal was to
formally define linear combinations of ZX-diagrams. We utilize the results in building
a prototypical simplification algorithm for ZX-diagrams arising from NISQ-applications.
More concretely, we consider diagrams which represent circuits from applying the Quan-
tum Approximate Optimization Algorithm (QAOA) to the MaxCut problem. Achieving
this goal is divided into three subproblems, which we consider separately.

Formal definition The first subproblem is to formally define what linear combinations
are. In Chapter 4 we show that in ZX/∼ matrix addition as interpretation, defines a
superposition rule. Furthermore, it is shown that this definition and the one given by
Stollenwerk et al. coincide. Stronger and more concise rewrite-rules than were presented
in literature are also proven to work in this construction. Namely distribution of addition
over composition and over the monoidal product. We also show some additional rewrite-
rules. These include commutativity and dropping of sums with only one term. Soundness
and universality of the construction are proven. This fulfils the first goal of this thesis.

Implementation The second subproblem is to implement linear combinations in a library
for ZX-diagrams. DisCoPy is chosen as a basis for the implementation. The previous
notion of formal sums in DisCoPy is extended to represent local sums. Distribution of
composition and monoidal product as proven are implemented. This is not only done for
diagrams used for quantum applications but since DisCoPy can be used with arbitrary
monoidal categories the implementation may be reused, if one has a category that obeys
the rules. Implementing sums in this way was the second goal of this thesis.

Simplification algorithm Lastly, we propose a prototype of an algorithm for simplifying
ZX-diagrams which arise from applications of QAOA to MaxCut. The algorithm uses a
greedy approach, only introducing spiders, if all other operations do not yield simplifica-
tion. Testing the algorithm on small examples yielded satisfactory results, which support
its feasibility. Limitations are discussed and suggestions for their possible resolution are
made. This prototype serves as a significant step towards general solutions for simplifying
parameterized ZX-diagrams.

53

6. Conclusion

Future work

There are several topics for future work from this point forward. The first could be
to find which additional rewrite-rules are needed for our extension of ZX-calculus to be
complete. Tangentially it would be interesting to consider what other categories have
similar structure and under which assumptions completeness holds.

Moreover, the presented prototype of an algorithm should be extended. This extensions
can come in several forms. It would be interesting to analyse the asymptotic runtime and
which conditions an input diagram needs to fulfil for the algorithm to terminate. Another
fascinating path could be to extend the algorithm to work for either applications of QAOA
to other combinatorial optimization problems or to different classes of ZX-diagrams all-
together. On a more practical level, we note that to improve practical relevance of the
algorithm a user-friendly interface for automatic simplification is needed. Setting aside
the proposed prototype we also wonder whether the addition of linear combinations can
help in developing a general algorithm for simplifying parameterized ZX-diagrams.

Summary

In conclusion we have presented a formal extension of ZX-calculus, introducing linear
combinations and proved necessary rewrite rules. Where our formulations are strictly
stronger than the ones known in literature before. Furthermore, we presented a proto-
typical rewrite algorithm that simplifies a specific class of diagrams to an analytical form
needed in applications. We have therefore reached the goals set at the start of this thesis,
and have also illuminated several paths for future work.

54

Bibliography

[Awo06] Steve Awodey. Category theory. Oxford university press, 2006.
[Bha+22] Kishor Bharti et al. “Noisy intermediate-scale quantum algorithms”. In: Rev.

Mod. Phys. 94 (1 Feb. 2022), p. 015004. doi: 10 . 1103 / RevModPhys . 94 .
015004. url: https : / / link . aps . org / doi / 10 . 1103 / RevModPhys . 94 .
015004.

[BK21] Lennart Bittel and Martin Kliesch. “Training variational quantum algorithms
is np-hard”. In: Physical Review Letters 127.12 (2021), p. 120502.

[Bor94] Francis Borceux. Handbook of Categorical Algebra: Volume 2, Categories and
Structures. Vol. 2. Cambridge University Press, 1994.

[BPV21] Agustín Borgna, Simon Perdrix, and Benot Valiron. “Hybrid quantum-classical
circuit simplification with the ZX-calculus”. In: Asian Symposium on Program-
ming Languages and Systems. Springer. 2021, pp. 121–139.

[CDH20] Cole Comfort, Antonin Delpeuch, and Jules Hedges. “Sheet diagrams for bi-
monoidal categories”. In: arXiv preprint arXiv:2010.13361 (2020).

[Cer+21] Marco Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews
Physics 3.9 (2021), pp. 625–644.

[CK17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course
in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press,
2017. doi: 10.1017/9781316219317.

[Coo71] Stephen A Cook. “The complexity of theorem-proving procedures”. In: Pro-
ceedings of the third annual ACM symposium on Theory of computing. 1971,
pp. 151–158.

[Dem16] Wolfgang Demtröder. Experimentalphysik 3: Atome, Moleküle und Festkörper.
Springer-Verlag, 2016.

[Dun+20] Ross Duncan et al. “Graph-theoretic Simplification of Quantum Circuits with
the ZX-calculus”. In: Quantum 4 (2020), p. 279.

[FGG14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A quantum approx-
imate optimization algorithm”. In: arXiv preprint arXiv:1411.4028 (2014).
url: https://arxiv.org/abs/1411.4028.

[FLS15] Richard P Feynman, Robert B Leighton, and Matthew Sands. Quantenmechanik.
Walter de Gruyter GmbH & Co KG, 2015.

[FTC20] Giovanni de Felice, Alexis Toumi, and Bob Coecke. “Discopy: monoidal cate-
gories in Python”. In: arXiv preprint arXiv:2005.02975 (2020).

[Git22] Github. Code frequency analysis for Quantomatic. 2022. url: https://github.
com/Quantomatic/quantomatic/graphs/code-frequency (visited on 11/21/2022).

55

https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://doi.org/10.1017/9781316219317
https://arxiv.org/abs/1411.4028
https://github.com/Quantomatic/quantomatic/graphs/code-frequency
https://github.com/Quantomatic/quantomatic/graphs/code-frequency

Bibliography

[GS18] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics.
Cambridge university press, 2018.

[HNW18] Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. “Two complete
axiomatisations of pure-state qubit quantum computing”. In: Proceedings of
the 33rd annual ACM/IEEE symposium on logic in computer science. 2018,
pp. 502–511.

[Hof20] Dirk W Hoffmann. Grundlagen der technischen Informatik. Carl Hanser Verlag
GmbH Co KG, 2020.

[HV19] Chris Heunen and Jamie Vicary. Categories for Quantum Theory: an intro-
duction. Oxford University Press, 2019.

[JPV18] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. “A complete ax-
iomatisation of the ZX-calculus for Clifford+ T quantum mechanics”. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science. 2018, pp. 559–568.

[JPV22] Emmanuel Jeandel, Simon Perdrix, and Margarita Veshchezerova. “Addition
and Differentiation of ZX-diagrams”. In: arXiv preprint arXiv:2202.11386 (2022).

[Kis12] Aleks Kissinger. “Pictures of processes: automated graph rewriting for monoidal
categories and applications to quantum computing”. In: arXiv preprint arXiv:1203.0202
(2012).

[Kor+11] Bernhard H Korte et al. Combinatorial optimization. Vol. 1. Springer, 2011.
[KW20] Aleks Kissinger and John van de Wetering. “PyZX: Large Scale Automated

Diagrammatic Reasoning”. In: Proceedings 16th International Conference on
Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-
14 June 2019. Ed. by Bob Coecke and Matthew Leifer. Vol. 318. Electronic
Proceedings in Theoretical Computer Science. Open Publishing Association,
2020, pp. 229–241. doi: 10.4204/EPTCS.318.14.

[Mac13] Saunders Mac Lane. Categories for the working mathematician. Vol. 5. Springer
Science & Business Media, 2013.

[Mer92] Dennis Iligan Merino. Topics in matrix analysis. The Johns Hopkins Univer-
sity, 1992.

[Muu22] Gina Muuss. Fix-branch for some bugs involving symbols in PyZX. 2022. url:
https://github.com/GinaMuuss/pyzx/tree/sympy-fixes-wip (visited on
11/21/2022).

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information. 2002.

[pro18] Quantomatic project. Quantomatic. 2018. url: https://quantomatic.github.
io/index.html (visited on 05/02/2022).

[SH22] Tobias Stollenwerk and Stuart Hadfield. “Diagrammatic Analysis for Param-
eterized Quantum Circuits”. In: arXiv preprint arXiv:2204.01307 (2022).

[Sho94] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th Annual Symposium on Foundations of Com-
puter Science. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

56

https://doi.org/10.4204/EPTCS.318.14
https://github.com/GinaMuuss/pyzx/tree/sympy-fixes-wip
https://quantomatic.github.io/index.html
https://quantomatic.github.io/index.html
https://doi.org/10.1109/SFCS.1994.365700

Bibliography

[SWY22] Razin Shaikh, Quanlong Wang, and Richie Yeung. “How to sum and exponen-
tiate Hamiltonians in ZXW calculus”. In: Quantum Physics and Logic 2022
(2022).

[Tan21] Till Tantau. PGF/TikZ Manual. "Accessed: 2022-10-22". Institut für Theo-
retische Informatik Universität zu Lübeck. Lübeck, Germany, 2021.

[Wet20] John van de Wetering. “ZX-calculus for the working quantum computer sci-
entist”. In: arXiv preprint arXiv:2012.13966 (2020).

[WY22] Quanlong Wang and Richie Yeung. “Differentiating and Integrating ZX Dia-
grams”. In: arXiv preprint arXiv:2201.13250 (2022).

[Yeu22] Richie Yeung. Pull-Request: Support representing symbolic graphs. 2022. url:
https://github.com/Quantomatic/pyzx/pull/97 (visited on 11/21/2022).

57

https://github.com/Quantomatic/pyzx/pull/97

A. Appendix

A.1. Pseudo-code simplification algorithm

1 def stage_one(diagram, inner_symbol, outer_symbol):
2 # Look for the center pi spiders
3 candidates = match_center_pi(diagram, inner_symbol)
4 diagram = permutate_pi_through(diagram, candidates)
5

6 # find some spiders with symbols where we pull the symbol into a scalar
7 candidates = find_candidates_for_pull_symbol_to_scalar(disco_diag, inner_symbol)
8 new_boxes = disco_diag.boxes
9 for candidate in candidates:

10 new_boxes[candidate] = sum_from_Xspider(disco_diag.boxes[candidate])
11 new_diag = discoZxDiag(
12 disco_diag.dom, disco_diag.cod, new_boxes, disco_diag.offsets
13)
14

15 # we combine adjacent sums
16 while len(candidates := find_combinable_sums(new_diag)) > 0:
17 new_diag = combine_sums(new_diag, candidates[0])
18

19 # distribute the sum outward and simplify independetly
20 candidates = []
21 for i, box in enumerate(new_diag.boxes[:-1]):
22 if isinstance(box, LocalSum):
23 candidates.append(i)
24

25 candidate = candidates[0]
26 results = []
27 for term in new_diag.boxes[candidate].terms:
28 dist_diag = discoZxDiag(
29 new_diag.dom,
30 new_diag.cod,
31 new_diag.boxes[:candidate] + [term] + new_diag.boxes[candidate + 1 :],
32 new_diag.offsets,
33)
34 dist_diag = dist_diag.upgrade(
35 discopy.quantum.zx.Functor(
36 lambda x: x, lambda f: f, ob_factory=PRO, ar_factory=discoZxDiag
37)(dist_diag)
38)
39 results.append(d)
40

41 # return multiple diagrams, all only containing inner_symbol in global phases
42 return results

58

A. Appendix

1 def stage_two(diagram, inner_symbol, outer_symbol):
2 smth_changed = True
3 while smth_changed:
4 smth_changed = False
5

6 if cycle := find_bialg_reverse(diagram):
7 diagram = replace_bialg_reverse(diagram, cycle)
8 smth_changed = True
9

10 if smth_changed:
11 continue
12 smth_changed = smth_changed or zx.simplify.copy_simp(diagram) > 0
13

14 if smth_changed:
15 continue
16 pi_comm_cand = find_pi_commute(diagram)
17 if len(pi_comm_cand) > 0:
18 diagram = apply_pi_commute(diagram, *(pi_comm_cand[0]))
19 smth_changed = True
20

21 return diagram

A.2. Open source contributions
As described in section Chapter 5 during this work we implemented several things in dif-
ferent open source projects. The two we actively contributed to are DisCoPy (https://
github.com/oxford-quantum-group/discopy) and PyZX (https://github.com/Quantomatic/
pyzx). To allow for repeatability we give the branch names and git-commit hashes the
experiments in Section 5.3.2 were run on in Table A.1. At the time of writing, the current
version of sympy was not working correctly with respect to modulo computation of non
integer variables. Therefore, for our testing we used the current version of the master
branch, the commit hash is also listed in the table below.

Project name Branch Commit Hash
DisCoPy feat-localsum-wip1 49ef50c6b6ecc5c402d1a931a8630fdd2b31c103

PyZX sympy-fixes-wip da75f067546a621b216157f299b9303cd0baa1a0
Sympy master 69c654b27d939718cd060172ad0fba95ada5a699

Table A.1.: Overview of open source versions for experiements

59

https://github.com/oxford-quantum-group/discopy
https://github.com/oxford-quantum-group/discopy
https://github.com/Quantomatic/pyzx
https://github.com/Quantomatic/pyzx

	Introduction
	Basics
	Quantum Computing
	Mathematical prerequisites
	A very short tour of why quantum mechanics is surprising
	Mathematical description of quantum mechanics

	Quantum circuits
	Parameterized quantum circuits
	Variational Quantum Algorithms

	Category Theory
	ZX-calculus
	How to build diagrams
	ZX-diagram as quantum operators
	How to modify diagrams
	Soundness, universality and completeness
	Linear combinations in ZX-calculus
	Category theoretic view

	Quantum Approximate Optimization Algorithm (QAOA)

	Related Work
	Linear Combinations of ZX-diagrams
	Motivation
	Formal Construction
	Scalar multiplication
	Sums of diagrams

	Proofs of equivalence
	Rules from Stollenwerk et al.
	Further useful rules
	Properties of the extended calculus

	Implementation
	Framework selection
	Implementation details
	Simplification Algorithm
	Main Idea
	Analysis
	Limitations

	Conclusion
	Appendix
	Pseudo-code simplification algorithm
	Open source contributions

